Genetic and tissue level muscle-bone interactions during unloading and reambulation
نویسندگان
چکیده
Little is known about interactions between muscle and bone during the removal and application of mechanical signals. Here, we applied 3wk of hindlimb unloading followed by 3wk of reambulation to a genetically heterogeneous population of 352 adult mice and tested the hypothesis that changes in muscle are associated with changes in bone at the level of the tissue and the genome. During unloading and relative to normally ambulating control mice, most mice lost muscle and cortical bone with large variability across the population. During reambulation, individual mice regained bone and muscle at different rates. Across mice, changes in muscle and trabecular/cortical bone were not correlated to each other during unloading or reambulation. For unloading, we found one significant quantitative trait locus (QTL) for muscle area and five QTLs for cortical bone without overlap between mechano-sensitive muscle and cortical bone QTLs (but some overlap between muscle and trabecular QTLs). The low correlations between morphological changes in muscle and bone, together with the largely distinct genetic regulation of the response indicate that the premise of a muscle-bone unit that co-adjusts its size during (un)loading may need to be reassessed.
منابع مشابه
Low-Level Vibrations Retain Bone Marrow's Osteogenic Potential and Augment Recovery of Trabecular Bone during Reambulation
Mechanical disuse will bias bone marrow stromal cells towards adipogenesis, ultimately compromising the regenerative capacity of the stem cell pool and impeding the rapid and full recovery of bone morphology. Here, it was tested whether brief daily exposure to high-frequency, low-magnitude vibrations can preserve the marrow environment during disuse and enhance the initiation of tissue recovery...
متن کاملThe HEPHAISTOS study: compliance and adherence with a novel orthotic device for calf muscle unloading.
The present manuscript seeks to discuss methodological aspects regarding the application of the novel unloading orthosis 'HEPHAISTOS' that has been specifically developed to study physiological effects of muscular unloading without altering the impact of gravitational loading. The 'HEPHAISTOS' has been applied in an ambulatory clinical interventional study. During gait, the 'HEPHAISTOS' signifi...
متن کاملMultiple exposures to unloading decrease bone's responsivity but compound skeletal losses in C57BL/6 mice.
A single exposure to mechanical unloading can result in significant bone loss, but the consequences of multiple exposures are largely unknown. Within a 18-wk period, adult C57BL/6 male mice were exposed to 2 wk of hindlimb unloading (HLU) followed by 4 wk of reambulation (RA) once (1x-HLU), twice (2x-HLU), or three times (3x-HLU), or served as ambulatory age-matched controls. In vivo μCT longit...
متن کاملOntogenetic, gravity-dependent development of rat soleus muscle.
We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either ...
متن کاملEffects of joint unloading and reloading on human cartilage morphology and function, muscle cross-sectional areas, and bone density - a quantitative case report.
Recent studies have shown that thinning of human cartilage occurs with unloading, but no data are available on the effect of remobilization (after immobilization) on knee joint cartilage status in humans. We examined a 36-year-old patient after 6 weeks of unilateral immobilization. Knee joint cartilage morphology (patella and tibia), patellar cartilage deformation, and thigh muscle cross-sectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016